
Mirai Botnet Detection: A Study in Internet

Multi-resolution Analysis for Detecting Botnet

Behavior

Sarah Khoja, Antonina Serdyukova, Khadeza Begum, Joonsang Choi

May 14, 2017

1



Project Summary

Botnets are by no means a recent attack vector, but, as Mirai’s recent

attack on Dyn showed, they still command attention. While there is a signif-

icant amount of research on botnet detection, behavior and prevention, there

is still room for new botnets to create chaos. Mirai is one such botnet which

targeted the Internet of Things (IoT) devices. It was able to exploit some ma-

jor vulnerabilities such as default passwords and unprotected ports. It may

seem surprising that Mirai’s trick card worked, especially considering the

Carna botnet [CARNA] which displayed almost the same exact vulnerabili-

ties on networked devices. However, this simply displays the lack of security

knowledge, or the obliviousness when it comes to IoT’s. In this contribution,

we simulate the botnet in order to determine any identifying characteristics

or behaviors, which will allow for a situational awareness report.

Motivation for the Project

A botnet is a collection of infected devices, or network of robots as its

name suggests. Generally, vulnerable targets are located, and the malware

is loaded onto the machine which then joins the botnet. The machine then

sends pings back to the command and control center, or CNC, which is

controlled by the botmaster, or the main attacker. The CNC is used to send

attacks and other commands to all the bots, and maintain the botnet. The

attacker will gather a large net of devices, and then use the combined force of

all the bots to send torrents of packets to a specified target. This onslaught

2



usually clogs the links to the point where legitimate service is denied, because

the target cannot handle the requests, thus resulting in what is known as a

denial of service attack. The target systems usually end up failing, and will

suffer continual denial of service until the attackers are stopped or back down.

There are of course variations of botnet architectures, setups and types of

attacks and obfuscations.

Mirai was not an overly complicated botnet, rather it leveraged the large

number of vulnerable, and easily exploited IoT’s to garner enough strength

to carry out a large scale distributed denial of service attack (DDoS). Initially

Mirai attacked a security journalist’s website, and then moved on to a larger

target- Dyn, a popular internet provider that supports a large part of the

internet backbone newmanwired. The traffic from the IoT bots effectively

denied millions of people access to internet services. While the attacks were

mitigated quickly, it did not deter from the fact that this botnet caused an

unsettling ripple in the increasingly connected world we now occupy. This

is more than enough to motivate research efforts in order to efficiently and

effectively detect and prevent further DDoS attacks.

Though the technological age introduces many conveniences in the form

of devices (some estimates indicate about 21 billion IoT devices by 2020 [2]),

the security aspect of said devices are below par. Mirai used this to its

advantage, and its modus operandi is as follows: It scans, attempts a brute

force entry point, reports back to an element of the botnet, compromises the

IoT device, and the cycle continues. Initially the CNC is set up, and the

3



scanning process begins from within the CNC. Once a susceptible machine

is found, the bruting process begins, where the CNC bot attempts to login

using a hard-coded list of login usernames and passwords. If the bruting

is successful, the initial CNC bot reports the information to the scanListen

server, which maintains a log of the login credentials. The scanListen then

connects to the loader, who will load Mirai onto the bruted device, which

takes over the device and forces it to repeat the process of: scan, brute,

scanListen, scan and so on [1].

Mirai is an important case to study for a variety of reasons. First, the

source code is publicly available, meaning that there will be variations and

continual usage of this malware [1]. Secondly, there is the Mirai architec-

ture to be considered. There are different foundations upon which botnets

are built, for instance an IRC botnet which has a centralized architecture.

The IRC botnet has a distinct signature, can easily be detected and has a

single point of failurezhao-botnet-detection. Peer-to-peer botnets are built

with an architecture similar to P2P sharing, and thus does not suffer from

single points of failure zhao-botnet-detection. However, P2P botnets do suf-

fer from latency in the CNC transmission, and this leads to an inhibition

of the bots’ synchronization zhao-botnet-detection. Mirai uses several com-

promised computers from mid-sized businesses as its CNC servers, and it

avoids detection by changing its location three times as much as other IoT

botnets [2]. In this contribution we hope to determine what, if any, Mirai

fingerprints exist.

4



Approach

Mirai’s traffic was captured by Impact, from the time period of June to

December 2016. This data set includes the scanning traffic that infected

Mirai bots send out to the network. Impact’s darknet acted as a sinkhole,

which pulled in all the SYN scanning traffic [3]. This was not ideal data, as it

did not have any other communications, aside from scan data. There was no

attack data, or any scanListen/loader communication, or even simple CNC

communication. This left us with a very one sided view of the botnet’s attack

methods. However, this does not mean this was completely useless data. In

fact, the scan data could instead be used to look for Mirai fingerprints.

Normally, when a packet is sent out, the operating system is in charge

of setting up the headers, like the TCP and IP header. Mirai, on the other

hand, when it sends out scan packets, takes the reigns and sets the headers

up in a specific way. One example of a hardcoded Mirai fingerprint is the

sequence number in the TCP header. Mirai shifts the destination IP address

until it is in integer form, rather than dotted notation, and uses that as the

sequence number when sending a scan packet to that destination. This is

how Impact was able to gather a corpus of scan data, by filtering for this

fingerprint [3].

We intend to use tools and scripts like p0f, the passive OS fingerprinting

tool, to determine if the operating systems behind the infected devices are

detectable. This will allow us to know if Mirai behaves differently based

on the different operating system that it occupies. Impact’s dataset can be

5



analyzed by examining specific header fields like TTL, window size, id, and

others.

We would also like to use packet analysis tools like ARGUS [4] or SiLK

SiLK on the scan data. This would help us visualize whether any useful

patterns exist. This could lead to some sort of data binning by time or fre-

quency, to locate any deeper identifying factors that Mirai enables. The data

needs to be analyzed using tools that will allow for making interconnections

within the set. SiLK [10]is one such set of tools that allow for network traffic

collection and analysis. The tools are highly useful for enabling analysts to

quickly and efficiently query large traffic databases.

Another approach to have a comprehensive review of Mirai would be to

set up the actual botnet. This will be done within the confines of DETER,

the experimental sandbox setup. Certain measures would have to be taken

to ensure that Mirai did not escape, because it is a highly aggressive scanner.

This would mean setting up certain firewall rules, changing Mirai’s source

code, and of course setting up an internal DNS server, because DETER’s

setup is not connected to the internet.

Due to the fact that there is not that much information within the scan

data, at first glance, we attempt to gather all the different types of Mirai

communication, and attempt a circular analysis. In essence, this contribution

attempts to replicate the results, and compare with what already exists.

Aside from the Impact data, and the data collected on Deter, we collected

data from a home network router. This is important because it allowed us

6



to see how Mirai was acting in real time, and what variations of it exist in

the wild. We hope to use data from a wide variety of sources, to get a more

complete understanding of this botnet.

Expected Outcomes

We expect to deliver visuals of the Mirai dataset. We hope to depict

characteristics in the data that can successfully identify the early stages of

a Mirai botnet attack. This could include packet transmission from the bot-

master to the zombie bots, such as CNC messages, or zombie bots scanning

for more victims to conscript to the army.

Outcomes

When using p0f, we initially ran into some issues with the third version,

which did not seem to be compatible with zipped files, and because of time

issues, we were forced to use the second version of p0f. Running p0f, with the

packaged fingerprint database list was entirely unsuccessful, as every single

IP address in the scan data pcaps returned with ”Unknown”. This makes

sense, as Mirai was overriding the onboard operating system, and making its

own header fields. The next approach was to define our own fingerprint, and

label it as Linux MiraiInfected. The contents of this fingerprint was the result

of a careful perusal of the scan data. p0f dictates that the fingerprint should

be listed in the following form: ”wwww:ttt:D:ss:000...:QQ:OS:Details”. The

first field is for window size, then time to live, then whether the don’t frag-

ment bit is set or not, followed by the overall SYN packet size, then the

7



option value, and lastly the operating system and specific version/details of

it. The scan data indicated that window sizes were almost unique, and ap-

parently random. Mirai’s source code supported this theory as it was using

a random function to assign the window size. Therefore, we left the window

size with an arbitrary value, and moved onto ttl. The ttl was interesting

because, using ARGUS, we realized that there was a definite pattern. When

the data was binned and organized by ttl, we noted that the times were

centralized around 46. A great majority of the packets fell into that bucket,

whereas the ttl’s of 33 and 200 held the few outliers. Some research later

suggested that Linux systems have a ttl set to 64, and knowing that many

IoT devices have Linux onboard, we chose 64 for the ttl of choice greene-iot.

The don’t fragment flag was not set for any of the packets, and this is normal

as packets usually don’t have this flag set. The length of the packets were

either 40 or 44, almost entirely. The latter size discrepancy was because some

packets had the MSS option filled out, while others didn’t. There were far

more packets that did not have the MSS option, than those with it. The

packets did not have any options set. We specified for the operating system

to be called MiraiInfected, and re-ran p0f. This time, nearly all the pack-

ets fell into either MiraiInfected packet size 44 or MiraiInfected packet size

40. These results suggested more work needed. Because all of the packets

keep falling into the same operating system fingerprint, we needed another

identifier that would differentiate between different operating systems.

We decided to work with ARGUS and SiLK as well. As mentioned ear-

8



lier, ARGUS helped us identify the normalized distribution of the ttl values.

However, when we binned the data by time, we found no significant results.

Though we binned by time, there was approximately the similar amounts of

packet in each time bin. The packets in each bin increased as the pcaps got

closer to the attack date.

Within the experiment on DETER, we were able to build Mirai and it’s

scanListen and loader components. Because DETER is a closed network, we

were not able to access the internet at all. But, Mirai used Google’s DNS

server to communicate and scan. As a result, we had to switch this, and build

a DNS server within the network and have it route the communications. Once

all the cross compilers, and other dependencies were installed, we were able

to build Mirai and began the attack phases. We were able to capture data

that displayed the attacker logging onto the CNC and accessing the bots,

and sending attack commands to the bots. The recreation of the botnet also

enabled the capture of scan data and loader data. The scan data is important

because we can use it for circular analysis. We were able to put the scan data

back into p0f and measure whether p0f could detect Mirai enabled packets.

Any packet that was sent from Mirai during the scan process returned as

”Unknown”. This was important to note, it supported our earlier findings.

We also used the DETER setup to create an vulnerable machine. This

target node was running telnet and had a user with one of the login credentials

that was in Mirai’s password list. Once we began the scanning process, we

began capturing packets where the CNC initial bot was attempting to brute

9



force its way into the vulnerable target. Analysis of these pcaps revealed

a better picture of what Mirai does as it runs. For instance, we were able

to replicate the syn scan. The destination address was converted into the

sequence number. This time, however, we were able to pick up the target

machine’s response. Before we setup telnet to listen on port 23, to allow

Mirai to brute force the password, the target machine refused to accept the

CNC’s SYN packet. Every time the CNC would send a SYN scan, the

target would reset the connection. Once we enabled telnet, we noticed that

the target node began sending SYN ACK packets, attempting to talk back

to the CNC. Generally, the CNC kept using the same sequence number,

but in some cases it used a new, apparently random number. And when

the CNC began pushing data, or brute forcing the password, the sequence

numbers changed to indicate how to later compose the byte stream with all

the received segments.

In order to collect data from the our local routers, we ran iptables to

ensure that packets that were dropped would be logged. Using the same

method Impact used, we were able to filter out only the Mirai scans, which

suggested that there are still strains of Mirai that maintain the sequence

number fingerprint. Using this filtered log, we then found the frequencies

of the ttl fields, which again was clustered around the mid-50’s, which is a

little higher than what was found in Impact’s data (around 40’s). We also

filtered out the window sizes, and the data indicated that a large percentage

of the packets had a unique window size. There were some anomalies, where

10



a window size was repeated, but it was far and few in between. Interestingly

enough, the frequencies corresponded in the following way, for instance, the

source ip v.x.y.z sent 30 SYN packets, and the same log contained a window

size of 62240 that appeared 30 times. This pattern appeared in a constant

fashion. This could suggest that if a source ip sends multiple packets to one

destination, it sends the same packet repeatedly. The size of the packets were

distributed equivalently to what was seen in Impact’s data, with the greater

portion being 40, and a smaller fraction being 44. An interesting aspect was

the destination ports; the logs indicated that Mirai was targeting 23, 2323,

but also new ports like 80, 81, 2222, 23231, which is one of the obvious signs

of new strains of Mirai.

Conclusion and Further Endeavors

The approaches so far were successful in providing a baseline starting point.

We have determined that some fingerprints exist, such as the sequence num-

ber and the length of the packet. However, any deeper fingerprints remained

hidden. The time binning did not work, nor did the passive os fingerprinting.

While we were initially unsuccessful, this is by no means a dead end, as we

still have further options to explore.

One future path of exploration would be in the frequency domain, or the

frequency of occurance. For instance, this can be extrapolated to the passive

operating systems fingerprinting. If we find that certain IP addresses are

communicating at different frequencies, then this could be a resulting effect

11



of the different operating systems behind the IP addresses. One attempt

would be to locate the ”top talkers” using ARGUS, over the course of some

time period, and then extracting all of the instances of the corresponding

SYN packets. This data could be used to calculate the frequency of packets

over the time domain, which would then involve Fourier or wavelet trans-

formations wavelets. Any patterns or outputs from this data would give us

another view point of the patterns in the undercurrents of Mirai.

Another option would be to consider machine learning. To reach some

conclusive statement that xyz traffic is actually Mirai traffic, we can use the

Impact dataset, combined with normal traffic in order to train a model and

determine which is malicious and which is benign traffic. An algorithm would

be trained on normalized traffic from Windows, Linux and iOS operating

systems; the training will be done over their respective classifiers. Once the

model is trained, it can be used on the scan traffic data, and we can attempt

operating system detection.

As mentioned earlier, the current available process for gathering Mirai

data is to filter by sequence number, if it matches the destination IP address.

This is the main fingerprint which was used to collect the Impact data, as well

as my router data. The DETER lab data did not suggest otherwise, rather it

supported this fingerprint. However, it must be noted that newer versions of

Mirai may not keep the sequence number fingerprint, and this would mean

any efforts to filter for this new version would fail using the aforementioned

method. Therefore, we are currently biasing the newer versions, should they

12



exist, out of the picture.

Ethics [11]

• Respect For Persons: This study uses a dataset with IP addresses that

have been anonymized using cryptopan.

• Beneficence: We are minimizing the harm by anonymizing the IP ad-

dresses, but at the same time, we preserve the prefixes which allow for

the data to be meaningful. Furthermore, we will run all instances of

the botnet within a closed system on DETER, which will minimize the

effects of the malware, while allowing the data to be collected.

• Respect for Law and Public Interest: Given the procedure stated above,

this research does not attempt to go beyond the limits of the law. The

malware will not be used in any public networks.

References

[1] A. Senpai, “Mirai forum post,” 2016.

[2] L. H. Newman, “The botnet that broke the internet isn’t

going away,” https://www.wired.com/2016/12/botnet-broke-internet-

isnt-going-away/.

[3] IMPACT. (2016) Mirai scanning 2016. [Online]. Available:

https://impactcybertrust.org/datasetview?idDataset = 717

13



[4] C. Bullard. (2016) Argus. [Online]. Available: https://qosient.com/argus/

[5] P. Barford, C. Partridge, and W. Willinger, “Internet multi-resolution anal-

ysis: A vision and framework in support of representing, analyzing, and

visualizing internet measurements.”

[6] MATLAB, “Understanding wavelets, part 1: What are wavelets,”

https://www.youtube.com/watch?v=QX1-xGVFqmw, August 2016.

[7] T.-F. Yen and M. K. Reiter, “Traffic aggregation for malware detection,”

in Proceedings of the 5th International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, ser. DIMVA ’08.

Berlin, Heidelberg: Springer-Verlag, 2008, pp. 207–227. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-70542-011

[8] J. Wiens, “Ids deconstructed,” February 2006.

[9] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of network

traffic anomalies,” in Proceedings of the 2Nd ACM SIGCOMM Workshop on

Internet Measurment, ser. IMW ’02. New York, NY, USA: ACM, 2002, pp.

71–82. [Online]. Available: http://doi.acm.org/10.1145/637201.637210

[10] CERT/NetSA at Carnegie Mellon University, “SiLK (System for Internet-

Level Knowledge),” [Online]. Available: http://tools.netsa.cert.org/silk.,

[Accessed: July 13, 2009].

14



[11] D. Dittrich and E. Kenneally, “The Menlo Report: Ethical Principles Guid-

ing Information and Communication Technology Research,” U.S. Depart-

ment of Homeland Security, Tech. Rep., Aug 2012.

15


